

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Electricity, Renewables and Storage

Professor Richard Green

© Imperial College Business School

Two recent trends in British electricity:

The Rise of Wind

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

How much CO₂ does wind power save?

What does this depend upon?

Source: www.electricinsights.co.uk (Imperial College and Drax Power)

Source: <u>www.electricinsights.co.uk</u> (Imperial College and Drax Power)

Generation in Great Britain

13-19 December 2014

6-12 August 2016

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe'

GB Fuel Prices

© Imperial College Business School

Sources: Elexon, BEIS and ICE

Sources: Elexon, BEIS and ICE

© Imperial College Business School

GB Fuel Prices

Sources: Elexon, BEIS and ICE

© Imperial College Business School

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe'

GB Fuel Prices

GB Fuel Prices

© Imperial College Business School

Sources: Elexon, BEIS and ICE

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe'

GB Fuel Prices

© Imperial College Business School

GB Generation & Fuel Prices

© Imperial College Business School

Sources: Elexon, BEIS and ICE

- Coal prices fell 24% from £9.70 to £7.40 per MWh
- Gas prices fell 39% from £20.70 to £12.70 per MWh
- Carbon prices more than doubled from £6.90 to £22.60 per tonne CO₂
- Wind capacity doubled from 7.3 to 14.7 GW
- Output rose from 17.6 to 30.6 TWh
- Solar PV capacity grew six-fold from 1.7 to 10.4 GW
- Output rose from 1.2 to 9.6 TWh
- Biomass capacity tripled from 0.7 to 2.1 GW
- Coal capacity almost halved from 27.2 to 15.0 GW
- Electricity demand fell 7% from 319 to 297 TWh

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial College Business School

Emissions of CO₂: changes relative to 2016

What if *X* had not changed after 2012?

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Emissions of CO₂: changes relative to 2012

What if only X had changed after 2012?

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Renewables and the electricity market

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Demand and Supply

Prices reflect Marginal Costs

Ast International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe" German Energy Prices: The Merit Order Effect

Imperial College

Business School

Source: Green and Staffell, Oxrep, 2016

Demand and Supply

The merit order effect

Capacity and Load

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial College Business School

Great Britain

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Generators' Load Factors

UK-wide, including Northern Ireland

Capacity and Peak Demand

Great Britain

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

GB Fuel Prices

© Imperial College Business School

33

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe'

Imperial College Business School

GB Fuel & Electricity Prices

© Imperial College Business School

Sources: Elexon, BEIS and ICE

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

A volatile market

Source: ElectricInsights.co.uk

Source: ElectricInsights.co.uk

A Low-Carbon Christmas

Source: ElectricInsights.co.uk

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Renewables in a Power Market

Part One: Killing your market

© Imperial College Business School

Load duration curve for GB

2011 demand and weather

Load duration curve for GB

Load duration curve for GB

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

PV and Relative Prices

Great Britain, May-July

-2009

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

PV and Relative Prices

Great Britain, May-July

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

PV and Relative Prices

Great Britain, May-July

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

PV and Relative Prices

Great Britain, May-July

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Output-weighted prices

© Imperial College Business School

Source: ElectricInsights.co.uk

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Output-weighted prices

[©] Imperial College Business School

Source: ElectricInsights.co.uk

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Output-weighted prices

Source: ElectricInsights.co.uk

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Output-weighted prices

Source: ElectricInsights.co.uk

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Renewables in a Power Market

Part Two: Killing the market?

© Imperial College Business School

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Supply and Demand

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

A volatile market

Source: ElectricInsights.co.uk

Power Market with Renewable and Thermal plant

- Model dispatch and prices over a year
- Thought experiment for future capacities
 - 15 GW onshore wind
 - 50 GW offshore wind
 - 15 GW solar PV
- Gas-fired CCGT and Peaking plants (OCGT)

• Some demand response

A simulated future

Demand

A simulated future

A simulated future

A simulated future

A simulated future

A simulated future

A simulated future

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

A barrier to renewables?

Relative revenues by type of plant

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Adding a little storage

Highest and lowest prices eliminated

© Imperial College Business School

• GB, 2030 with endogenous generation capacity

• GB, 2030 with endogenous generation capacity

Price-duration curves

• GB, 2030 with endogenous generation capacity

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Renewables in an Energy Market

How storage changes price-setting, if there's enough of it

© Imperial College Business School

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

A volatile market

Source: ElectricInsights.co.uk

A less volatile market

Source: Energinet.dk

Imperial College Business School

Supply and Demand

Finn's bathtub, from Forsund (2007) Hydropower Economics, Springer

Reservoir Levels

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Richard's bath-tub

Storage with generation

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Richard's bath-tub

Storage with generation

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Richard's bath-tub

Storage with generation

The maximum amount of storage is limited by its energy capacity (horizontal arrow)

A simulated future

Energy Market: Week 7 of "2010"

Demand

A simulated future

A simulated future

A simulated future

A simulated future

A simulated future

Power Market: Week 7 of "2010"

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

A simulated future

A simulated future

Power Market: Week 44 of "2010"

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Stored Energy Levels

8760 hours of "2010"

—Peaking Storage

Stored Energy Levels

8760 hours of "2010"

Imperial College Business School

Storage flows and prices

Week 47 of "2010"

Revenues by type of plant

© Imperial College Business School

Imperial College Business School

A storage-renewable market

18 TWh or more in "2010"

15 TWh capacity in "2010"

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

Beyond the power market

What else can storage do?

(Mostly material from Goran Strbac)

© Imperial College Business School

My model is too simple

- I have ignored:
 - Real-time balancing
 - Uncertainty
 - Transmission constraints
 - Distribution constraints
 - Inertia

- Storage can provide:
 - Balancing energy
 - Reserve
 - T-constraint relief
 - D-constraint relief
 - Fast response

It's profitable to be charged more

Source: Teng, F. and G. Strbac (2016), "Business Cases for energy storage with multiple service provision" *J. Mod. Power Syst. Clean Energy* DOI 10.1007/s40565-016-0244-1

© Imperial College Business School & Department of Electronic & Electrical Engineering

Imperial College Business School

Source: Teng, F. and G. Strbac (2016), "Business Cases for energy storage with multiple service provision" *J. Mod. Power Syst. Clean Energy* DOI 10.1007/s40565-016-0244-1

© Imperial College Business School & Department of Electronic & Electrical Engineering

Imperial College Business School

It's profitable to be charged more

Source: Teng, F. and G. Strbac (2016), "Business Cases for energy storage with multiple service provision" *J. Mod. Power Syst. Clean Energy* DOI 10.1007/s40565-016-0244-1

© Imperial College Business School & Department of Electronic & Electrical Engineering

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Whole-system value and business case for energy storage

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Whole-system value and business case for energy storage:

access to revenues from providing multiple services is critical

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

Whole-system value and business case for energy storage:

access to revenues from providing multiple services is critical

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

- Frequency regulation services
 - Providing primary/secondary / tertiary frequency regulation services

Whole-system value and business case for energy storage:

access to revenues from providing multiple services is critical

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

Frequency regulation services

Providing primary/secondary / tertiary frequency regulation services

Capacity market

 Contributing to meeting peak demand, reducing need for peaking plant

Whole-system value and business case for energy storage:

access to revenues from providing multiple services is critical

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

Frequency regulation services

✓ Providing primary/secondary / tertiary frequency regulation services

Capacity market

Contributing to meeting peak demand, reducing need for peaking plant

Low carbon generation mix

 Flexibility supports meeting carbon targets while reducing investment in low carbon generation

Imperial College Business School

Energy Storage: hitting CO2 targets of 100 g/kWh in 2030 and 25 g/kWh in 2050

1st International Capacity Building (ICB)"Learning from

1st International Capacity Building (ICB)"Learning from

Change in installed capacity if 20 GW of storage added

Whole-system modelling:

multi-service provision by storage

Arbitrage

✓ Participate in day-ahead energy market

Balancing services

✓ Participate in real-time balancing market

Network Support

✓ Reducing need for T & D network reinforcements

Frequency regulation services

✓ Providing primary/secondary / tertiary frequency regulation services

Capacity market

✓ Contributing to meeting peak demand, reducing need for peaking plant

Low carbon generation mix

Flexibility supports meeting carbon targets while reducing investment in low carbon generation

Option value

✓ Providing flexibility to deal with uncertainty

What about the competition for energy storage?

1st International Capacity Building (ICB)"Learning from

Cost effectiveness of alternative technology options are system specific

Comprehensive whole-system analysis carried out: (1) Assessing the performance and cost targets for alternative flexible technologies (2) Understanding the competitiveness and synergies between alternative flexible technologies

Imperial College Business School

Imperial College Business School

Key findings

- Significant role of ES in facilitating cost effective transition to low carbon energy system
- Cost-efficient deployment of new ES in the UK in 2030 may reach nearly 20 GW if it is available at low cost; however, DSR represents a key competitor that could limit the business case for ES
- ES can provide a range of system services such as balancing, security of supply (local and national level), managing uncertainties (option value)
- We need regulations and market rules that capture the value of as many of these as possible

Imperial College Business School

1st International Capacity Building (ICB)"Learning from Regulatory Experiences and Market Development in Europe"

Imperial means Intelligent Business

UKERC

Thanks to:

EPSRC Engineering and Physical Sciences Research Council Corporate Renewable Procurement: Opportunities in India

- Online executive education programme led by faculty from Imperial College Business School in partnership with the Confederation of Indian Industries
- Invitation-only and free to selected participants; enrolment capped at 30 individuals comprising a diverse mix of corporates, utilities, financiers, policymakers and regulators
- Participants to develop the skills to <u>expand corporate</u> <u>renewable power use in India</u> and collaborate on solutions to overcome obstacles
- Selected case studies and industry guest speakers

Why Are We Doing This Course?

1. <u>Corporate renewable procurement is growing</u> in various parts of the world, thanks to a strong economic case

1st International Capacity Building (ICB)"Learning from

- 2. Policy push in India, ambitious 175GW total / 40GW rooftop target
- 3. <u>Strong interest from industry and involvement of local partners</u> (CII)

Practical Details

- Starts: 12 November 2018
- <u>Participants</u>: 30 from diverse occupations, <u>including regulators</u>
 "Senior enough to matter, junior enough to have time to participate"
- **<u>Commitment required</u>**: ~5 hours per week over 4 weeks
- <u>Outcome</u>: knowledge, community and Imperial College London certificate of completion
- **<u>Cost</u>**: Free, thanks to a grant from Children Investment Fund Foundation
- Get in touch:
 - lowcarbonpowerhub@imperial.ac.uk
 - Dr Charles Donovan, Course Leader <c.donovan@imperial.ac.uk</p>